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SHAPES OF ANNULAR LAYERS OF FLUID ON THE SURFACE OF A ROTATING 

CYLINDER 

V. E. Epikhin, P. N. Konon, 
and V. Ya. Shkadov 

UDC 532.516 

A qualitative and quantitative study is made of the equilibrium forms of plane 
and axisymmetric fluid layers. 

The power-engineering, chemical, and building sectors make use of production processes 
based on the phenomenon of instability of the free surface of a layer of fluid. For example, 
the production of thermal insulating wool by the centrifugal-roller method involves the dis- 
integration of a layer formed on the surface of a rapidly rotating cylinder when a mineral 
melt falls onto the roller [i]. The study [2] presented photographs reflecting the stages 
of formation of layers of a viscous fluid (such as glycerin or aqueous solutions of glycerin) 
obtained on an experimental unit which included a rotating cylindrical roller mounted on 
the horizontal shaft of an electric motor. Some of the liquid which falls onto the roller 
is thrown off by centrifugal forces. The rest of the liquid is entrained by the rotating 
surface in the form of an annular layer, with drops separating from the layer about its en- 
tire perimeter. When a certain period of time has elapsed after cessation of the supply 
of fluid, a steady-state regime is established in which the fluid ring, with a smooth sur- 
face, rotates as a solid. With an increase in the speed of rotation, the surface of the 
ring may acquire a wavy shape - as in the photograph shown in Fig. When the speed is in- 
creased above a certain critical value, more of the mass of the fluid is thrown from the 
roll and another stationary fluid ring with a wavy free surface is established. 

The studies [3-7] used the small parameter method to theoretically investigate the forms 
of equilibrium of liquid streams and layers near bifurcation points. Here, we perform a 
quantitative and qualitative study of nonlinear solutions in relation to values of the char- 
acteristic parameters. 

i. Formulation of the Problem and Derivation of the Basic Equation. We introduce a 
cylindrical coordinate system 0, x, y, @ (Fig. 2). The motion of the viscous fluid is 
described by the Navier-Stokes equations, the continuity equation, and the equation of the 
free surface: 

du 1 "~ - - -  VP + ~ e  Au,  VU - -  O, p = const ,  ( 1 )  

dh (2)  
- - = v ,  y = h ( x ,  9, t). 

dt 
The no rma l  and s h e a r  s t r e s s e s  on t h e  e x t e r n a l  s u r f a c e  o f  t h e  l a y e r  s a t i s f y  t h e  c o n d i -  

t i o n s  in  [ 8 ] .  Due t o  a d h e s i o n ,  t h e  components  o f  v e l o c i t y  on t h e  r o l l e r  s u r f a c e  have  t h e  
f o l l o w i n g  v a l u e s  : 

u = 0 ,  v = O ,  w =  1, V =  1. (3 )  
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Fig. i. Photograph of a layer of glycerin 
on the surface of a cylinder of the radius 
0.0123 m, rotating at a speed N = 163 rpm. 

We will ignore viscous interaction with the environment and body forces. We change 
over to the coordinate system ~, ~, N, 8 connected with the rotating cylinder: 

= t ,  ~ = x ,  ~ = y ,  O = ~ - - t .  

We seek steady-state solutions to problem (i-3) corresponding to a layer which is immobile 
relative to the surface of the cylinder: 

u = O ,  v = O ,  w = O ,  h = h ( 5  0). 

System (1-2) is satisfied identically if p(~) is determined from the equation 

@ 

On 
the solution of which 

(4) 

(5) 

1 
P(n) = P~ + ~ (~2 _ 1), p~ = p(1) = const. ( 6 )  

Having inserted Eq. (6) into the boundary condition for the normal stresses, we obtain an 
equation for determination of the surface of the layer 

2 ! 
. . . .  We(2Eu + h ~ - -  1). (7 )  

R, 2 

Problem (1-3) was examined in [4-6] in the case of plane (~h/~x = 0) and axisymmetric 
(8h/8~ = 0) flows. 

2. Plane Layer. In the experiments in [2], the width of the layer was ten times greater 
than the characteristic value of its thickness. We will assume that the fluid layer is in- 
finite with respect to ~, so that h = h(8). Equation (7) leads us to an equation for h(8): 

2hh ~ -  4h q-  We(2Eu + h z - -  I) (h "~ -t- h2) a/2 - -  2h2 = 0 (8 )  

(the prime denotes differentiation with respect to O). If we examine a layer with a fixed 
mass, then Eq. (8) is augmented by the condition 

2 ~ (h~-- 1)do = M. (9) 
0 

The constant M is assigned. Let us study the solutions of Eq. (8). For a layer of constant 
thickness h = h0, Eq. (8) makes it possible to obtain 

h~ q- ( 2Eu- -  1)h, = ~ .  (10)  
We 

The o n l y  r o o t  o f  Eq. (10)  h0 > 1 e x i s t s  f o r  any  v a l u e s  o f  t h e  number  We > 0 i n  t h e  c a s e  
Eu < O, w h i l e  when Eu > O, i t  e x i s t s  u n d e r  t h e  c o n d i t i o n  EuWe < 1. E q u a t i o n  (10)  l e a d s  t o  
the formula 

2Eu = I + 2 hl 
We h o 
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Fig. 2. Free surface of a nonaxisymmetric 
stationary layer, immobile relative to the 
surface of the rotating cylinder, in the 
case We = 9.4, Eu = -0.092, h I = i.i0 (cal- 
culation). 

from which we can determine the pressure on the cylindrical surface p = Pl. Linearizing 
Eq. (8) relative to the equilibrium cylindrical free surface D = h0, we obtain the following 
for perturbations of the surface layer: 

h " +  1 [(6ho~ + 5 h ~ ) W e - - 4 l h  = 0, 2• = 2 E u - -  1. ( 1 1 )  

The condition of periodicity of the solution of (Ii) with respect to 8 reduces to satisfac- 
tion of the equalities 

(6ho~-[- 5hi)  W% -- 4 = 2n 2, h] + 2• o -- 2 
We~" (12)  

Equations (12) make it possible to determine bifurcation points of the parameters Wen and ~n 
at which, together with a cylindrical surface of constant thickness, there exist equili- 
brium cylindrical surfaces whose nornal sections have n-th-order symmetry. We can use (12) 
to express Wen and • through h 0 and n: 

n 2 -  1 
Wen = - -  

and  t o  e x p r e s s  h o and •  t h r o u g h  We and n :  

( 3 -  n 2) h~ 
, ~ =  ( 1 3 )  

2 (n  z - 1) ' 

3 - -  n z 3 f  n z _  1 
• = 2 ~ W e  z (n z _ 1)' ho = W ~ > W e  1 ( 1 4 )  

(n=/=l, 0>•215215 With allowance for the inequality h 0 > i, Eqs. (14) permit 
us to obtain the necessary conditions for branching of a cylindrical surface with n-th-order 
symmetry: 

3 - -  n z 3 - -  n 2 
. ( n - - 1 ) 2 - - 1 < W e < n Z - - 1 ,  - - < •  - - < 0  ( n = 2 , 3  . . . .  ). 

We 2 (n z - -  1) 

Bifurcations were analyzed in [3] without allowance for Eq. (i0). 

We will examine the surface of a layer of wavy form q = h(0). Using the substitution 
of variables h' = q(h), we obtain the first integral of Eq. (8): 

h , ~ = _ h  ~ Ql(h, B) Q~(h, B) 
O~ (h, B) ' Q1Q~ ~ o; ( 1 5 )  

8h Q~_ = Qo 8h (16) 
Oo --  h '  -6 2(2Eu - -  1 ) h Z - - B > 0 ,  Q~ _- Oo + W-'-~-' - -  W--e'" 

It is easy to see that if we diffeentiate with respect to 0, we can use integral (15) to 
obtain the initial equation (8), assuming that Q0 > 0. The below inequalities follow from 
Eqs. (15) and (16) and the inequality Q0 > 0: 

@.(h, B ) ~ O < Q o ( h ,  B ) < Q ~ ( h ,  B). 

1005 



/ 
t 2 -,r -qe q! Eu 

Fig. 3. Dependence of the integral (18) 
on the number Eu with different values 
of We: I) We = 3; 2) 6.25; 3) 9.4; 4) 25. 
The solid lines correspond to h i = i.i, 
the dashed lines correspond to h i = 1.01. 

The values of h at which Q2(h, B) = 0 and, thus, h' = 0, correspond to the minima (valleys) 
and maximum (crests) of the wavy surface ~ = h(@). We obtain the following from integral 
(i5) p, 

h '  = +_h 1 /  Qi(h, B) Q~(h, B) , O----• ~ Qo(h, B) dh 
V Qg (h, B) J h ] / ~ O l  (h, B) Q2 (h, B) (17) 

On t h e  wavy s u r f a c e  o f  t h e  l a y e r  ~ = h ( O ) ,  t h e  d i s t a n c e  b e t w e e n  two s u c c e s s i v e  t r o u g h s  h = h 1 
o r  c r e s t s  h = h 2 d e t e r m i n e s  t h e  w a v e l e n g t h  t ,  w h i l e  t h e  d i s t a n c e  b e t w e e n  a v a l l e y  and a c r e s t  
d e t e r m i n e s  t h e  h a l f - w a v e l e n g t h  t / 2  ( F i g .  2 ) .  H e r e ,  X = 2 ~ / n ,  where  n = l ,  2 . . . .  i s  t h e  
mode o f  t h e  s o l u t i o n  c o r r e s p o n d i n g  t o  t h e  wavy s u r f a c e .  I n  Eq. ( 1 7 ) ,  t h e  + s i g n  c o r r e s p o n d s  
t o  t h e  c o n d i t i o n  h '  > 0,  w h i l e  t h e  - s i g n  c o r r e s p o n d s  t o  - h '  < 0 on t h e  h a l f - w a v e  i n  q u e s -  
t i o n .  The p e r i o d i c i t y  c o n d i t i o n  i s  s a t i s f i e d  i f  an e v e n  number  o f  h a l f - w a v e s  i s  l o c a t e d  
a b o u t  t h e  p e r i m e t e r  o f  t h e  r o l l e r ,  i . e . ,  i f  t h e  f o l l o w i n g  e q u a t i o n  i s  s a t i s f i e d  

a,~ Qo(h, B)dh = ,~ (18) 

.! h F= Q~ (h, B) q~ (h, B) n h, 

If the root Q2 is a multiple root, then the condition Q'2h makes it possible to obtain Eq. (i0) 
for a layer of constant thickness. 

We will examine a numerical method of constructing periodic solutions of Eq. (8). Let 
@i be the point of the extremum of the layer thickness, so that h = h i and h' = 0 at % = 8 i. 
Assuming that the parameters We, Eu, and h i are known, we express the constant B from the 
condition Q2(h, B) = 0: 

B ---- h~ q- 2 (2Eu - -  l )  h~ 8hl 
We 

We fix values of h i , n, and We and we select an appropriate value of Eu to satisfy Eq. (18). 
Values of Eu are considered and refined (by the method of division by half, for example) 
until the integral (18) converges to ~/n with the prescribed accuracy. The surface of the 
layer is determined by numerical integration of Eq. (8) with the same values of 8i, hi, We, 
and n and the value found for Eu. We simultaneously use Eq. (9) to find the mass of the 
liquid per unit length along the roller axis. In order to keep the fluid mass constant in 
the periodic solutions of Eq. (8), h i and Eu should be chosen so as to simultaneously satis- 
fy Eqs. (18) and (9) with the required accuracy. 

The improper integral (18) is changed to the form 

i F (h,) dh, I=- h, 
_ ,  

2h - -  (hi + h~) 
h2 -- h I 

(i9) 

F(h.) Qo(h,, B) , (h. hl)(h.--h~) ~ / /  - -  ( 2 0 )  
h,  Ql(h. ,  B)Q~(h,, B) " 

1 0 0 6  



TABLE i. Comparison of the Experimental Data in [2] with Cal- 
culated Results 

Data from [2] --I From Eqs. (4) Fromllonlinear theory 

No. of 10 2 r n h.r n h s E n 
expt. Ro, m see 

1,23 33,51 
2,5 18,85 
2,5 25,13 

2,5 33,51 

3,5 18,85 
3,5 25",13 

3,5 33,51 

3,5 41,89 

4 
4--6 
7--9 

9--1 

7--9 
12--1; 

14--!{ 

17--191 

1,17 9.401 
1,12 24.981 
1,12 44,411 

1,07 78,95 

1,06 68,55 I 
1,05 121,9 [ 

1,03 1216,7 

1,03 ]338,5 

1 

15 

19 

1,168 
1,119 
1,026 

1,004 

1,053 
1,055 

1,011 

1,022 

--0,092 
--0,090 
--0,005 

0,008 

--0,040 
--0,049 

--0,007 

--0,018 

7 
8 
9 
9 

l0 
11 
9 

12 
13 
15 
16 
19 

h s E 

1,165 --0,090 
1,117 --0,088 
1,027 --0,005 
1,098 --0,085 
1,135 --0,130 
1,013 --0,008 
1,067 --0,058 
1,I02 --O,lO0 
1,052 --0,040 
1,056 --0,050 
1,082 --0,080 
1,014 --0,01~ 
1,043 --0,040 
1,021 --0,018 

To calculate the integral (19), we use the Hermitian formula: 

I (F) = _ (ht,), hk = cos 2 K  j '  

w h e r e  K i s  t h e  n u m b e r  o f  t h e o r e t i c a l  n o d e s  o f  t h e  f u n c t i o n  F ( h , ) ,  k = l ,  2 . . . . .  K. L e t  
u s  p r e s e n t  t h e  r e s u l t s  o f  c a l c u l a t i o n s  p e r f o r m e d  f o r  a n n u l a r  l a y e r s  w i t h  t y p i c a l  v a l u e s  o f  
t h e  d i m e n s i o n l e s s  p a r a m e t e r s .  F i g u r e  1 shows  a p h o t o g r a p h  o f  t h e  s u r f a c e  o f  a s t a t i o n a r y  
l a y e r  i n  t h e  c a s e  We = 3 7 . 6 .  

Before we compare the theoretical results with experimental data, we should note the 
following. We average the pressure across the layer 1 5 N < h(8) by means of the weight 
factor e 2 : 

P .  = e2Pa -t- (1 - -  e 2) p (h), 0 ~ e ~ ~ 1. 

The basic equation (8) is transformed as follows: 

2hh" - -  4h '~ -a r- We [2Eu - -  e ~ (1 - -  h2)l (h"  -F h2) 3/2 - -  2h2 = 0 .  ( 2 1 )  

Equation (21) leads to (8) if we replace the dimensionless parameters Eu and We by the param- 
eters E = Eu/e 2 and W = e2/We, respectively. A change in the angular velocity ~0 by the 
amount e~ 0 leads to the same change in these parameters. Figures 2 and 3 show results of 
calculations performed with e = 1/2. Table 1 compares data obtained in [2] with the cal- 
culated results. The minimum value of the radius of the layer surface was taken from the 
photograph. 

3. Axisymmetric Layer. In the experiments in [6], a viscous liquid which fell onto 
the surface of a rotating cylinder with a horizontal axis spread over the cylinder in the 
form of a layer of constant thickness. Under the influence of random perturbations, the 
layer acquired a wavelike form and then broke up into rings. The largest of these rings 
continued to break up until a certain minimum size was reached. The shape of the free sur- 
face of the annular layers which formed remained close to axisymmetric. We will assume that 
the fluid was immobile relative to the surface of the rotating cylinder: u = v = w = 0, h = 
h($). Equation (7) allows us to obtain the following: 

2hh" - -  2 (h '~ -t- 1) + W e  (2Eu + h 2 - -  1) h (h '~ + 1) 3/2 = 0 ( 2 2 )  

(here, the prime denotes differentiation with respect to ~). Linearizing Eq. (22) relative 
to the equilibrium cylindrical free surface q = h0, we obtain the following for small devia- 
tions 

' 1 Weho) h O. 
h" + ( - -~-o  + = ( 2 3 )  

The periodicity condition of solution (23), with the wavelength ~ = 2~/~ (u is the wave number 
of the perturbed surface), requires satisfaction of the equalities 

hl  + 2• - 2 1 W e '  hg - t - W e h  o=k2~z 2 ( k =  1 ,2  . . . .  ). ( 2 4 )  
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Fig. 4. Calculated forms of the free surface of an axisy~etric 
layer which is stationary relative to the surface of a rotating 
layer in the case We = 105 and R 0 = i with different values of 
e 0 and Eu. 

System (24) makes it possible to determine the bifurcation points of the parameters Wek and 

• k : = . - -  [3 - -  (k~ho) 21 h 2 
Wek (k~zh~ 1 > O, ~k = 

ho a 2 [(k=h0) z - -  11 ( 2 5 )  

Periodic equilibrium layers were studied in [4] without allowance for condition (i0). 

Let us study the nonlinear solutions of Eq. (22). We will change over to the internal 
coordinate system connected with the surface of the layer [9] and transform the problem to 
the following form: 

de cose = 1 W e [ 2 E u +  R2(S) - -  1], 
ds R(s) - -  2 ( 2 6 )  

dZ = c o s e ,  d_~R = sine; ( 2 7 )  
ds ds 

e(0) ---- 80, Z(0) --  0, R(0) --- Ro. (28) 
Here, s is the length of the arc of a meridional section of the free surface; e is the tan- 
gent angle formed with the symmetry axis at the corresponding point of this section; E 0 is 
the angle of contact and is given. It should be noted that system (26), (27) is invariant 
relative to a substitution of variables 

sx=s, Z1----L--Z, RI=R, 81=~- -e ,  Wel- - -We-  (29) 

W i t h  t h e  r e p l a c e m e n t  o f  We by -We,  Eqs ,  ( 2 6 )  and  ( 2 7 )  d e s c r i b e  t h e  f r e e  s u r f a c e  o f  t h e  l a y e r  
on t h e  i n s i d e  s u r f a c e  o f  a r i g i d  c y l i n d r i c a l  s h e l l .  

The f i r s t  i n t e g r a l  o f  Eq. ( 2 6 )  h a s  t h e  f o r m  

8 cos e 
R ~ + 2 (2Eu - -  1) R z - -  W - - - - ~  R --  B, ( 3 0 )  

where B is the constant of integration. Differentiating both parts of (30) with respect 
to s and allowing for (27), we find Eq. (26). We solve (30) for cos e. By virtue of the 
inequality Ices e l =< I, we obtain: 

! 
- -  1 ~  cos e = .,,We8 {R~-1-2 ( 2 E u -  1)R z -  B] - - ~  < 1. (3 1) 

The first integral of (30) is used to establish characteristic points of the line ~ = R(s). 
For example, at extremum points, the equalities e = 0, ~, cos e = +-i are satisfied. The in- 
tegral (30) allows us to obtain 

8 
R~q - 2 ( 2 E u - -  1) R z T - ~ - e  R = B. ( 3 2 )  

S t a t i o n a r y  a x i s y ~ n e t r i c  l a y e r s  w h i c h  a r e  p e r i o d i c  a l o n g  t h e  g e n e r a t r i x  o f  a c y l i n d r i c a l  
roller were obtained theoretically in [4]. Figure 4 shows results of numerical integration 
of system (26), (27) with initial conditions (28)in the case We = l0 s and R 0 = i with dif- 
ferent values of e 0 and Eu. Solid lines 1-4 show the free surface of the layer in the case 
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Eu = -0.001, when the angle E 0 successively takes the values 112, 80, 40, and 4 ~ . The re- 
sults agree with a qualitative study made using Eqs. (30) and (32). Dashed lines 1-3 show 
the free surface in the case Eu = 0.0008, when e 0 takes values of 112, 80, and 40 ~ . An in- 
crease in e 0 above 112 ~ leads to self-intersection of the free surface, similar to [9]. Thus, 
for example, the calculations showed the following: if e0 = 128~ then self-interaction occurs 
at Eu = 0.0008; if e 0 = 136 ~ , then it occurs at Eu = 0; if e0 = 144~ then it takes place 
at Eu = -0.001. A reduction in the number Eu to -0.021, -0.041, and -0.061 leads to self- 
intersection of the surface at just e 0 = 4 ~ . 

NOTATION 

Dimensionless parameters of the problem: Reynolds number, Weber number, and Euler number 
') 9 ') Re=(pR8%)/~,, We=(pR3~)/o. Eu=(pl--pa)/(pRSc%);p, p, O, absolute viscosity, density, and surface 

tension of the liquid, respectively; Pl, pressure on the surface of the cylinder; Pa, 
ambient pressure; N, number of roller revolutions per second (m0 = 2~N); hs, mean thickness 
of the layer, determined by the equation h s = ~M/~ + I; R s, mean curvature of the layer sur- 
face, determined by the expression 2/Rs = [(l -]- h2x) (h~q- 2h2--hhe,)-- 2hxhw (hx hw --hhx~)--hhxx (hS + h2~) ]/(h2 

~ 2 2 3/2 = =Oh~O% hx~ =O~h/OxO% hxx = 02h/Ox ~, hq~ = O~h/O~2; + h~ + h h x )  , where we used the notation: h x Oh/Ox, hq~ 
u = {u, v, w}, u, v, w, axial, radial and transverse components of velocity; p, pressure 
in the layer; L, constant. 

LITERATURE CITED 

i. G.F. Tobol'skii, Mineral Wool and Products Made from It [in Russian], Chelyabinsk (1968). 
2. A.E. Kulago, V. P. Myasnikov, V. G. Petrov-Denisov, and A. M. Pichkov, Coll. Tr. 

VNIPITeploproekt: Design and Construction of Special Structures [in Russian], Moscow 
(1981), pp. 76-84. 

3. Yu. K. Bratukhin and L. N. Maurin, Prikl. Mat. Mekh., i, 754-756 (1968). 
4. V.V. Pukhnachev, Zh. Prikl. Mekh. Tekh. Fiz., No. 2, 127-134 (1973). 
5. V.V. Pukhnachev, Zh. Prikl. Mekh. Tekh. Fiz., No. 3, 78-88 (1977). 
6. H.K. Moffat, J. Mec., 16, No. 5, 651-673 (1977). 
7. A.D. Myshkis (ed.), Fluid Mechanics of Weightlessness [in Russian], Moscow (1976). 
8. V. Ya. Shkadov, "Some methods and problems of the theory of hydrodynamic instability," 

Nauch. Tr. Inst. Mekh. Mosk. Gos. Univ., 25 (1973). 
9. V.E. Epikhin, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 144-148 (1979). 

1009 


